Cell-sheet technology is a well-known method by which cells are grown on thermoswitchable substrates that become nonadhesive upon cooling, such that a complete layer of adherent cells, along with the produced extracellular matrix, detaches as a sheet. Polymers that exhibit a lower critical solution temperature (LCST) below physiological temperature in water, commonly poly(N-isopropylacrylamide) (PNIPAM), are covalently grafted or, for block copolymers, physisorbed onto substrates in a monomolecular thin film to achieve this. Consequently, such substrates, and the polymers required for film formation, can only be prepared in a chemical lab with profound macromolecular expertise. In this study, we present an easy and robust method to coat standard cell culture dishes with aqueous solutions of commercially available poly(2-n-propyl-2-oxazoline) (PnPrOx), a polymer that exhibits LCST behavior. Different standard cell culture dishes were repeatedly coated with 0.1 wt % aqueous solutions of PnPrOx and dried in an oven to create a fully covered and thermoresponsive surface. Using this PnPrOx surface a variety of cell types including endothelial cells, mesenchymal stem cells, and fibroblasts, were seeded and cultured until confluency. By decreasing the temperature to 16 °C, viable cell sheets were detached within cell-type dependent time frames and could be harvested for biological analysis. We show that the cytoskeleton rearranges, leading to a more contracted morphology of the cells in the detached cell sheet. The cellular junctions between single cells within the sheet could be detected using immunostainings, indicating that strong and intact intracellular contacts are preserved in the harvested sheets.